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Sharks are marine consumers believed to occupy top positions in marine food webs.
But surprisingly, trophic level estimates for these predators are almost non-existent.
With the hope of helping better define the ecological role of sharks in marine
communities, this paper presents standardized diet compositions and trophic levels
calculated for a suite of species. Dietary composition for each species was derived
from published quantitative studies using a weighted average index that takes into
account sample size in each study. The trophic level (TL) values of the 11 food types
used to characterize the diet (obtained from published accounts) were then used to
calculate fractional trophic levels for 149 species representing eight orders and 23
families. Sharks as a group are tertiary consumers (TL>4), and significant differences
were found among the six orders compared, which were attributable to differences
between orectolobiforms (TL<4) and all other orders, and between hexanchiforms and
both carcharhiniforms and squatiniforms. Among four families of carcharhiniform
sharks, carcharhinids (TL=4.1, n=39) had a significantly higher TL than triakids
(TL=3.8, n=19) and scyliorhinids (TL=3.9, n=21), but not sphyrnids (TL=3.9, n=6).
When compared to trophic levels for other top predators of marine communities
obtained from the literature, mean TL for sharks was significantly higher than
for seabirds (n=28), but not for marine mammals (n=97). Trophic level and body
size were positively correlated (ry=0.33), with the fit increasing (ry=0.41) when the
three predominantly zooplanktivorous sharks were omitted, and especially when
considering only carcharhinid sharks (r;=0.55).
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Introduction

Sharks are believed to have played an important role
in aquatic food webs throughout their evolutionary
history. While it is widely recognized that many extant
species of sharks are top or apex predators in marine
communities, surprisingly little quantitative information
is available on their diets. Furthermore, there are very
few quantitative estimates of trophic levels to substanti-
ate the claims of high trophic position of many species of
sharks. As contemplated in the top-down view of eco-
logical interactions (Brooks and Dodson, 1965), con-
sumers can affect community structure and function.
Many sharks, like marine mammals, are large and
abundant marine consumers and as such are likely to
influence the aquatic communities in which they exist
(Bowen, 1997).

Two general approaches have been used to determine
trophic levels in other marine organisms. Diet compos-

1054-3139/99/050707+11 $30.00/0

ition studies use the relative proportions of prey types
and their respective trophic level (Mearns ez al., 1981;
Sanger, 1987), whereas stable-isotope analysis provides
estimates of assimilated foods based on measurements of
stable isotopes of nitrogen and carbon in tissues of
marine consumers (Fry and Sherr, 1988; Owens, 1988).

The goal of the present study was to calculate stand-
ardized diet compositions and to estimate trophic levels
based on diets for all species of sharks for which
quantitative studies were found. Both the dietary com-
positions and trophic levels obtained are species-specific
and thus are intended to provide an integrated picture of
each species in time and space.

Materials and methods

The target population of studies included all those which
used an index to quantify stomach contents, or which
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Table 1. Prey categories used to calculate standardized diet compositions and trophic levels of sharks.

Trophic
Code Species group level*
FISH Teleost fishes 3.24
CEPH Cephalopods (squids, octopuses) 32
MOL Molluscs (excluding cephalopods) 2.1
CR Decapod crustaceans (shrimps, crabs, prawns, lobsters) 2.52
INV Other invertebrates (all invertebrates except molluscs, 2.5
crustaceans, and zooplankton)

Z00 Zooplankton (mainly euphausids “krill”’) 2.2
BIR Seabirds 3.87
REP Marine reptiles (sea turtles and sea snakes) 2.4
MAM Marine mammals (cetaceans, pinnipeds, mustelids) 4.02
CHON Chondrichthyan fishes (sharks, skates, rays, and chimaerids) 3.65
PL Plants (marine plants and algae) 1

*Taken or calculated from Sanger (1987), Hobson and Welch (1992), Hobson (1993), Hobson et al.
(1994), Pauly and Christensen (1995), and Pauly er al. (1998a).

provided sufficient dietary information to allow calcula-
tion of a quantitative index. Most of the work included
consisted of peer-reviewed articles, but gray literature,
unpublished theses and dissertations, some books, and
in a few cases, personal communications, were also
included. The Aquatic Sciences and Fisheries Abstracts
(ASFA) and Biological Abstracts (BIOSYS) were the
abstracting and indexing services utilized for systematic,
computerized literature searches. Only studies published
in this century were included and geographical coverage
included all oceans and major seas.

Eleven food categories were considered to calculate
standardized diet compositions and trophic levels of
sharks (Table 1). An index of standardized diet compos-
ition was based on a weighted average that allows
incorporation of data from multiple quantitative dietary
studies of a particular species and takes into account the
sample size (number of stomachs examined) in each
study. The formula to calculate the proportion that each
prey category P; makes up of the diet is:

> PiN;
P-: i=1

J i(iPuNi)

j=1\i=1

(1)

where P;; is the proportion of prey category j in study i,
N; is the number of stomachs with food used to calculate
P; in study i, n is the number of studies, j is the number
of prey categories (11), and ZP;=1.

For each study, P;; values were calculated using the
quantitative method used in the original study, with
the following ranking criteria aimed at characterizing
the diet more accurately: compound indices, such as the
index of relative importance (IRI or %IRI), were used
if available; otherwise, single indices, such as percent
frequency of occurrence (%0), percent number (%N),

percent weight (%W), or percent volume (%V) were used
individually. If two single indices were available, an
average was calculated (e.g. %N+%V/2). No qualitative
data were used in this study. The complete list of
references used to calculate diet compositions is not
included owing to its extension, but is available from the
author or from the Internet (Table 2).

Trophic levels (TL,) were then calculated for each
species (k) as:

ipj ><TLJ.>, 2)

TL, =1 +<

j=1
where TL; is the trophic level of each prey category j.
Trophic level (TL) of prey categories was taken from
several published accounts. The value for teleost fishes
(Table 1) was the mean of 19 mean trophic levels
calculated by Pauly and Christensen (1995) for several
species groups, ranging from clupeids (TL=2.6) to
scombrids (TL=4.2), using Ecopath II (Christensen and
Pauly, 1992); values for all other prey categories, except
seabirds, also came from Pauly and Christensen (1995)
and Pauly et al (1998a) and from Hobson and Welch
(1992), who used stable-isotope analysis. Trophic level
values for seabirds were taken from Sanger (1987),
Hobson and Welch (1992), Hobson (1993), and Hobson
et al. (1994) and refer mostly to seabirds found in polar
ecosystems.

Trophic levels for families and orders were calculated
as the mean of estimates for individual species. To
evaluate the robustness of the conclusions to insufficient
or poor data all calculations involving trophic levels
were repeated after eliminating data for species with
small sample sizes (n<20), with the exception of data
for the three predominantly zooplanktivorous species
(Cetorhinus maximus, Rhincodon typus, and Mega-
chasma pelagios).
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Table 3. Trophic levels of sharks by order (in bold) and family.

Taxonomic group n Mean LCL UCL Min Max
Carcharhiniformes 90 4.0 39 4.1 3.2 43
Carcharhinidae 39 4.1 4.1 4.2 3.8 4.3
Hemigaleidae 2 4.2 4.1 4.3 43 43
Proscyllidae 2 4.1 4.0 4.1 4.0 4.1
Pseudotriakidae 1 4.3

Scyliorhinidae 21 3.9 3.8 4.0 3.5 42
Sphyrnidae 6 39 3.6 4.2 32 4.3
Triakidae 19 3.8 3.7 3.9 3.5 42
Lamniformes 8 4.0 3.7 4.4 3.2 4.5
Alopiidae 2 4.2 4.2 4.2 4.2 4.2
Cetorhinidae 1 32

Lamnidae 3 4.3 4.2 4.5 4.22 4.5
Megachasmidae 1 34

Odontaspididae 1 4.4

Orectolobiformes 6 3.6 3.4 3.9 3.1 4.1
Ginglymostomidae 2 4.0 3.8 4.2 3. 4.1
Hemiscyllidae 2 3.6 3.5 3.8 3.5 3.7
Rhincodontidae 1 3.6

Stegostomidae 1 3.1

Hexanchiformes 5 43 4.2 4.5 4.2 4.7
Chlamydoselachidae 1 4.2

Hexanchidae 4 4.3 4.2 4.5 4.2 4.7
Pristiophoriformes 1 4.2

Pristiophoridae 1 4.2

Squatiniformes 6 4.1 4.0 4.2 4.0 4.2
Squatinidae 6 4.1 4.0 4.2 4.0 4.2
Squaliformes 32 4.1 4.0 4.2 3.5 4.4
Echinorhinidae 1 4.4

Squalidae 31 4.1 4.0 4.2 3.5 43
Heterodontiformes 1 32

Heterodontidae 1 32

n is number of species; LCL and UCL are 95% lower and upper confidence limits of the mean; Min

is minimum value, Max is maximum value.

Results

Standardized diet compositions and trophic levels were
calculated for 149 species of sharks (Tables 2 and 3). The
histogram of estimated trophic levels of sharks shows
that the distribution is not normal (Kolmogorov-
Smirnov test, p<0.001; Fig. 1). Descriptive statistics
(Table 4) indicated that sharks as a group are predomi-
nantly tertiary consumers (TL>4), but orectolobiforms
(n=6) and heterodontiforms (n=1) are secondary con-
sumers (TL<4). There were significant differences in TL
among six orders compared statistically (Kruskal-Wallis
test on ranks corrected for ties, 5 d.f., p=0.002; Fig. 2).
Post hoc multiple-comparison Z-value tests further indi-
cated that orectolobiforms, the only group compared
with mean TL<4, were significantly different from the
other five orders analysed, and hexanchiforms (n=35),
the group with the highest TL (4.3), were also signifi-
cantly different from both carcharhiniforms (TL=4.0,
n=90) and squatiniforms (TL=4.1, n=6).

The trophic levels ranged from 3.1 in the zebra shark,
Stegostoma fasciatum (Orectolobiformes) to 4.7 in the

broadnose sevengill shark, Notorynchus cepedianus
(Hexanchiformes) (Table 2). The second highest
TL (4.5) corresponded to the great white shark,
Carcharhodon carcharias (Lamniformes).
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Figure 1. Histogram of trophic levels of sharks. Also shown are
the density trace and dot plot.
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Table 4. Descriptive statistics of trophic levels of sharks, marine mammals, and seabirds. Values for
marine mammals were calculated from data in Pauly ef al (1998a) and exclude sirenians, freshwater
dolphins, and polar bears; values for seabirds were calculated from Sanger (1987), Hobson and Welch
(1992), Hobson (1993), and Hobson ef al. (1994).

Taxonomic group N  Mean LCL UCL Min Max Median 25%p 75%p Mode
Sharks 149 4.0 4.0 4.1 3.1 4.7 4.1 3.8 4.2 4.2
Marine mammals 97 4.0 39 4.1 32 4.5 4.1 4.0 43 4.1
Seabirds 28 3.9 3.7 4.0 3.1 4.8 3.8 3.6 4.1 4.1

LCL and UCL are 95% lower and upper confidence limits of the mean; 25%p and 75%p are the 25th
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and 75th percentiles of the median.

Statistical comparison of TL values calculated for
four families of carcharhiniform sharks for which
sample size was reasonably high (Table 3) revealed
significant differences (Kruskal-Wallis test on ranks cor-
rected for ties, 3 d.f,, p=0.00005). Post hoc multiple-
comparison Z-value tests indicated that carcharhinids
(n=39), the only family of the four analysed with mean
TL>4, were significantly different from triakids
(TL=3.8, n=19) and scyliorhinids (TL=3.9, n=21), but
not from sphyrnids (TL=3.9, n=6).

Trophic levels of sharks were compared to values for
mammals presented in Pauly et al (1998a), which
excluded sirenians, freshwater dolphins, and polar bears,
and to values for seabirds presented in Sanger (1987),
Hobson and Welch (1992), Hobson (1993), and Hobson
et al. (1994) (Table 4). A Kruskal-Wallis test on data
corrected for ties revealed significant differences among
the three groups (2d.f., p=0.023), with post hoc
multiple-comparison Z-value tests indicating that sharks
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Figure 2. Trophic levels for eight orders of sharks. Values
shown are means with upper 95% confidence limits, except for
pristiophoriformes (n=1) and heterodontiformes (n=1).

(n=149) and marine mammals (n=97) were significantly
different from seabirds (n=28). Mean TL for marine
mammals and sharks as a group was identical (Table 4).

Trophic level and body size (total length) were posi-
tively correlated (Spearman rank correlation coefficient,
r,=0.33, p<0.0001, n=149; Fig. 3a), with the fit increas-
ing (r,=0.41, p<0.0001, n=146; Fig. 3b) when the three
predominantly zooplanktivorous species were removed.
Trophic level and body size showed a stronger corre-
lation in carcharhinid sharks (r,=0.55, p=0.0003, n=39;
Fig. 3c), with a monomolecular curve of the type
TL=A(1-e "), where A is an asymptote, k is a rate
constant, and L is total length in cm, giving a good fit to
the data (Pearson correlation coefficient, r=0.56,
p<0.001, n=39).

Repetition of the analyses after eliminating species
with small sample sizes resulted in no appreciable
changes in results. Mean TL for sharks (n=112) was still
4.0 and there were no significant differences in TL
among the three orders (carcharhiniforms, lamniforms,
and squaliforms) that could be compared statistically.
Statistical differences among the four carcharhiniform
families compared remained the same as in the baseline
analysis. Differences among sharks, marine mammals,
and seabirds also remained the same, albeit a little less
significant (p=0.032), and trophic level and body length
were more positively correlated in all cases.

Discussion

The findings of this study support the common view that
sharks are top predators. Mean trophic level for sharks
was identical to that calculated for marine mammals,
although the latter did not include sirenians, which are
herbivores (TL=2); freshwater dolphins, which are not
marine; and polar bears (TL=5.1; Hobson and Welch,
1992; Pauly et al., 1998a). However, this study indicates
that trophic levels of sharks are somewhat higher than
those of seabirds obtained from the literature, calculated
using both dietary and stable-isotope analyses. These
results generally suggest that sharks utilize similar
resources to these other high-level marine consumers.
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Figure 3. Relationship between total length and trophic level of
sharks. (a) is for 149 species representing eight orders and 23
families, (b) does not include the three predominantly zoo-
planktivorous species, and (c) is for 39 species of carcharhinid
sharks only.

Trophic levels estimated here agree well with several
values reported by Opitz (1996) for sharks and rays of
Caribbean coral reef ecosystems, which ranged from 3.9
to 4.1. These values, also calculated using Ecopath II,
were based on food consumption estimates for 13 species
of sharks (9 carcharhinids, 1 ginglymostomid, 2
sphyrnids, and 1 triakid) and two species of rays (1
dasyatid and 1 myliobatid).

E. Cortés

Body length and trophic level were moderately corre-
lated. It is possible that body mass could have been a
better predictor, but this variable was not available for
many species, hence the use of body length as a surro-
gate. Even in the case of carcharhinid sharks, which
showed the highest correlation, only 30% of the variance
was explained by trophic level and body length. The
positive trend between body length and trophic level
contradicts the view that trophic levels of aquatic
organisms are inversely related to size (Pauly et al,
1998b and references therein).

There are a number of factors which may have
affected the TL values found in this study. The weighted
average index was intended to favour those studies
conveying the most information, and thus incorporated
weights for the number of stomachs with food examined
in each study. While different single or combined indices
of dietary analysis provide different types of information
and may be incommensurable (Cortés, 1997), it would
have been too limiting to use only one specific method
and so a variety of indices were included to calculate the
weighted average index. It was also deemed preferable
not to include qualitative dietary descriptions or behav-
ioural observations to avoid further imprecision and
bias in the estimates.

Trophic level of prey may also have affected estimates.
In particular, the value used for fishes incorporated a
wide array of teleost species, albeit the majority were
secondary consumers (TL>3). It would have been pref-
erable to use narrower groupings, as for example, in
Pauly et al.’s (1998a) division of fishes into small pelagic,
mesopelagic, and miscellancous fishes. However, this
would have also prevented use of a considerable number
of studies in which prey items were only described as
“fish”.

It is expected that more detailed, species-specific or
population-based studies will yield different diet compo-
sitions and trophic levels from those found in the present
study. However, it is felt that the magnitude of this
discrepancy should not be very large. Standardized diet
compositions and trophic levels presented herein should
be regarded as aggregates that provide an integrated
description for each species including variability among
populations in time and space. These estimates should
also be considered preliminary and dynamic, in as much
as additional dietary studies will provide more informa-
tion that can be incorporated into the quantitative index
to fine-tune the estimates.

The aim of the dietary composition approach was to
include as many quantitative studies as possible. As a
corollary, the resulting estimates may be biased in some
cases because not all studies used to calculate the index
were equally reliable. However, further weighting by a
reliability scale would have been too subjective and it
was decided not to include it. Trophic levels estimated
for families, orders, and sharks as a group were robust
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to the influence of species with small sample sizes and
indeed none of the conclusions based on the whole data
set (n=149) changed after eliminating those species
(n=149 — 37=112). The robustness and imprecision of
the diet composition and trophic level estimates could be
further evaluated by using resampling techniques, such
as the bootstrap, or Monte Carlo simulation as pro-
posed by Pauly et al. (1998a), but this was beyond the
scope of the present work.

It appears that the marine food webs in which sharks
exist are considerably long, with at least four trophic
levels in many cases, and with sharks generally occupy-
ing the upper trophic positions. It is unclear what effect
this can have on community stability, especially in the
light of recent findings disputing the long-held view that
longer food chains are more dynamically fragile thereby
limiting food chain length (Sterner et al., 1997). While it
is intuitively easy to predict that high-order carnivores
such as sharks exert top-down effects, these putative
effects remain very poorly understood and unquantified.
Similarly, bottom-up effects of lower trophic level
organisms in the overall processes of energy transfer
ultimately reaching sharks are virtually unknown.
Despite this uncertainty, the high trophic levels of sharks
suggest that overall yield from fisheries should be low
and not sustainable at high exploitation levels, as seen
for other high trophic level fishes (Pauly et al., 1998b).

It is widely recognized that establishing trophic rela-
tionships within communities is a daunting task (Paine,
1988; Hobson and Welch, 1992). This is particularly true
of marine communities and of the upper-level consum-
ers, such as sharks, within them. The main reasons for
this are logistical limitations, such as the difficulty of
year-round sampling in marine ecosystems or the
extreme difficulty and sometimes impossibility of con-
ducting manipulative experiments with large organisms,
such as marine mammals (Bowen, 1997) or sharks
(Cortés, 1997). Owing to these limitations to both tem-
poral and spatial scaling, studies of trophic organization
dealing with sharks will likely continue to depend to a
large extent on punctual stomach content analyses,
because they remain simpler and less time-consuming
than stable-isotope analyses. However, it is highly desir-
able that much more attention be focused on the stable-
isotope approach at least as a validation of conventional
dietary analyses.
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